If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17^2+x^2=28^2
We move all terms to the left:
17^2+x^2-(28^2)=0
We add all the numbers together, and all the variables
x^2-495=0
a = 1; b = 0; c = -495;
Δ = b2-4ac
Δ = 02-4·1·(-495)
Δ = 1980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1980}=\sqrt{36*55}=\sqrt{36}*\sqrt{55}=6\sqrt{55}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{55}}{2*1}=\frac{0-6\sqrt{55}}{2} =-\frac{6\sqrt{55}}{2} =-3\sqrt{55} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{55}}{2*1}=\frac{0+6\sqrt{55}}{2} =\frac{6\sqrt{55}}{2} =3\sqrt{55} $
| 2x-8=3(x-3)-2 | | Y=50x+300 | | x³-2x-45=0 | | 6x-64=3x-1 | | 44-5x=2x+16 | | 0.8/90=5/6/y | | -46-4v=-12v+10 | | 6-5(1+9b)=-21 | | 7(2x-2)=10(2x+4) | | 0=-4.9t^2+17t | | 2x+16=-16 | | 13-9=19-16=x | | 113-6x=20x+9 | | 31=8x+7 | | 9(2z-6)=-33 | | Y=-4/7x-6x=-2 | | 15n-19=17n-23 | | 120-10k=6k+8 | | -2y+7-5=-17 | | 7(2x+4)=10(2x+4) | | 3r+10=22-r | | 14n-19=15n-23 | | 9(v-2)=-7v+46 | | 7r-2=6r+7 | | 64-4k=3k+15 | | 74-4k=10k+4 | | 2x2-7x715x=0 | | 64-4k=3k+156 | | (D^4+4D^3+8D^2+8D+4)y=0 | | 331-15x=3x+7 | | (2x+3)-27=0 | | 8u+14=6(u+2) |